Phospholipase D1 localises to secretory granules and lysosomes and is plasma-membrane translocated on cellular stimulation

نویسندگان

  • Fraser D. Brown
  • Nicola Thompson
  • Khalid M. Saqib
  • Joanna M. Clark
  • Dale Powner
  • Neil T. Thompson
  • Roberto Solari
  • Michael J.O. Wakelam
چکیده

Phospholipase D (PLD) activity has been implicated in the regulation of membrane trafficking [1,2], superoxide generation and cytoskeletal remodelling [3,4]. Several PLD genes have now been identified and it is probable that different isoforms regulate distinct functions. Defining the subcellular localisation of each isoform would facilitate understanding of their roles. Previous PLD localisation studies have been based largely on enzyme activity measurements, which cannot distinguish between isoforms [2,5]. We have cloned the cDNAs encoding human PLD1a and PLD1b from an HL60 cell cDNA library and expressed them as catalytically active fusion proteins with green fluorescent protein (GFP) in COS-1 cells and RBL-2H3 cells, a mast cell model which degranulates upon cross-linking of the high-affinity immunoglobulin E (IgE) receptor. In unstimulated cells, GFP-PLD1b colocalised with secretory granule and lysosomal markers; it was not found at the plasma membrane or nucleus and did not colocalise with markers for the Golgi. Stimulation or RBL-2H3 cells through IgE receptor cross-linking caused plasma membrane recruitment of GFP-PLD1b. Inhibition of IgE-receptor-stimulated, PLD-catalysed phosphatidate formation suppressed secretion of granule and lysosomal contents, but did not affect translocation of GFP-PLD1b. These experiments suggest that PLD1 plays a role in regulated exocytosis rather than endoplasmic reticulum (ER) to Golgi membrane transport.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phospholipases D1 and D2 regulate different phases of exocytosis in mast cells.

The rat mast cell line RBL-2H3 contains both phospholipase D (PLD)1 and PLD2. Previous studies with this cell line indicated that expressed PLD1 and PLD2 are both strongly activated by stimulants of secretion. We now show by use of PLDs tagged with enhanced green fluorescent protein that PLD1, which is largely associated with secretory granules, redistributes to the plasma membrane in stimulate...

متن کامل

Calcium-regulated exocytosis of dense-core vesicles requires the activation of ADP-ribosylation factor (ARF)6 by ARF nucleotide binding site opener at the plasma membrane

The ADP ribosylation factor (ARF) GTP binding proteins are believed to mediate cytoskeletal remodeling and vesicular trafficking along the secretory pathway. Here we show that ARF6 is specifically associated with dense-core secretory granules in neuroendocrine PC12 cells. Stimulation with a secretagogue triggers the recruitment of secretory granules to the cell periphery and the concomitant act...

متن کامل

ADP-ribosylation-factor-regulated phospholipase D activity localizes to secretory vesicles and mobilizes to the plasma membrane following N-formylmethionyl-leucyl-phenylalanine stimulation of human neutrophils.

Phospholipase D (PLD) is responsible for the hydrolysis of phosphatidylcholine to produce phosphatidic acid and choline. Human neutrophils contain PLD activity which is regulated by the small GTPases, ADP-ribosylation factor (ARF) and Rho proteins. In this study we have examined the subcellular localization of the ARF-regulated PLD activity in non-activated neutrophils and cells 'primed' with N...

متن کامل

Internalization and recycling to serotonin-containing granules of the 80K integral membrane protein exposed on the surface of secreting rat basophilic leukaemia cells.

The 80K (80 x 10(3) Mr) integral membrane protein, first described in the secretory granules of rat basophilic leukaemia (RBL) cells, is also localized to lysosomes in these cells. The protein displays the same distribution in natural killer lymphocytes (RNK-7), wherein it codistributes with cytolysin in secretory granules. In contrast, the protein is absent from the endocrine and exocrine secr...

متن کامل

Regulated exocytosis in chromaffin cells. Translocation of ARF6 stimulates a plasma membrane-associated phospholipase D.

The ADP-ribosylation factor (ARF) GTP-binding proteins have been implicated in a wide range of vesicle transport and fusion steps along the secretory pathway. In chromaffin cells, ARF6 is specifically associated with the membrane of secretory chromaffin granules. Since ARF6 is an established regulator of phospholipase D (PLD), we have examined the intracellular distribution of ARF6 and PLD acti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 8  شماره 

صفحات  -

تاریخ انتشار 1998